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Abstract

Two methods of mixing noise modification were

studied for supersonic jets flowing from rectangular

nozzles with an aspect ratio of about five and a small
dimension of about 1.4 cm. The fn'st involves nozzle

geometry variation using either single (unsymmetrical) or
double bevelled (symmetrical) thirty degree cutbacks of

the nozzle exit. Both converging (C) and converging-

diverging (C-D) versions were tested. The double
bevelled C-D nozzle produced a jet mixing noise

reduction of about 4 dB compared to a standard

rectangular C-D nozzle. In addition all bevelled nozzles

produced an upstream shift in peak mixing noise which is

conducive to improved attenuation when the nozzle is

used in an acoustically treated duct. A large increase in

high frequency noise also occurred near the plane of the
nozzle exit. Because of near normal incidence, this noise

can be easily attenuated with wall treatment. The second

approach uses paddles inserted on the edge of the two
sides of the jet to induce screech and greatly enhance the

jet mixing. Although screech and mixing noise levels are
increased, the enhanced mixing moves the source

locations upstream and may make an enclosed system

more amenable to noise reduction using wall acoustic

treatment.

Introduction

The objective of this research is to study ways in

which the noise of a supersonic rectangular jet can be

significantly reduced using excitation or other shear flow
control means which could find practical application in a

*Lewis Distinguished Research Associate, retired,
Member AIAA

**Research Engineer

Copyright © 1993 by the American Institute of Aeronautics
and Astronautics, Inc. No copyright is asserted in the

United States under Title 17, U.S. Code. The U.S. Govern-
ment has a royalty-free license to exercise all rights under
the copyright claimed herein for Governmental purposes.

All other rights are reserved by the copyright owner.

single or multiple jet mixer or ejector device. It is
intended that this excitation device be a natural source

which feeds upon the steady flow for its energy rather

than requiring an external power source of any kind. The

emphasis of this work was to investigate geometries which
would be used internal to a shroud and this has led to the

concentration on near-field hydrodynamic and acoustic

fields. Two approaches to improving the performance of
such devices seem obvious. The first is to cause the

direetivity of the internally generated mixing noise to be
more normal to the acoustic treatment surface which

would make the suppressor much more effective. An

attempt to accomplish this first objective led to the
double-beveled nozzle tests which are reported here. In

some, but not all cases, the directivity was significantly

changed for the mixing noise frequencies of interest, and

the jet noise was reduced significantly. Thus the bevelled

nozzle may be a candidate for the internal mixer-ejectors
where properly designed acoustic treatment might be used

to further exploit the directivity changes. The second

approach is to increase the mixing rate of the jets to move

the jet noise source back toward the nozzle lip and thus

provide a longer propagation length for an acoustic lining

to reduce the internal mixing noise. Mixing enhancement

of the supersonic jet flow from a converging-diverging

rectangular nozzle operated at design pressure was

obtained using paddles to induce screech and cause jet

flapping.

Seiner and Krejsa I have discussed the status of

supersonic jet noise reduction relative to the supersonic

transport. A large reduction in jet noise will be necessary
for such an aircraft to meet anticipated noise goals. The

work reported in this paper is intended to explore the two

approaches mentioned above to help provide an efficient

method to achieve some of this required noise reduction.
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Figure 1. Schematic of supersonic jet flow rig

Tam 2 and Lilley 3 have provided excellent recent reviews

of the fundamentals of jet noise production. The idea that

the jet noise is intimately involved with the large coherent

structures produced in the jet mixing process is

particularly relevant here. This paper reports research

based upon the manipulation of these structures to try to

effect a jet noise reduction.
Seiner _ et al. and Ponton 5 et al. have extensively

measured the noise produced by supersonic rectangular

jets. Wlezien and Kibens 6 have conducted experiments on

the noise generated by supersonic jets formed by round
nozzles with unsymmetrical exits. One additional element

found in the research reported here is that some of the

nozzles are converging-diverging nozzles running nearly

shock free at the design pressure differing from the

previously reported converging nozzles with the resulting

strong shock structures. A second additional element is

that the jet instability and thus the large coherent

structures are manipulated to alter the jet noise. Also the

double bevelled converging-diverging nozzle discussed

here has the flow emerging almost axially rather than

being diverted to the side as in the converging nozzles of
reference 6.

This paper represents an extension of the work

reported by Rice and Raman 7,s. In reference 7 the use of

paddles was first introduced to induce a resonant screech

tone to provide greatly increased jet mixing. In reference
8 the supersonic flow fields for the bevelled rectangular

nozzles were presented. In both references 7 and 8 the

concentration was on the aerodynamics of the process

while in this paper the acoustic effects are emphasized.

Air Flow Facility

Experiment

A schematic drawing of the flow facility used in this

experiment is shown in Fig. 1. The high pressure air

enters at the left into the 76 cm diameter plenum where it

is laterally distributed by a perforated plate and a screen.

Two circumferential acoustically treated splitter rings

Figure 2. Rectangular nozzle and paddles



remove the upstream valve and entrance noise. The flow
is further conditioned by two screens before undergoing
two area contractions of 3.5 and 135 for the rectangular

nozzles used in this experiment. The nozzle shown in

Fig. 1 is not drawn to scale but is greatly enlarged.

Nozzles and Paddies

A close-up view of the nozzle is shown in Fig. 2. A
6.4 nun microphone is seen taped to the nozzle just
behind the nozzle lip. A set of full length paddles (76

mm) are mounted in their support structure. This
structure has three-dimensional movement and paddle

spacing adjustment which are remotely controlled from
the control room. On the paddle support shafts the tubing
for the total pressure taps can be seen. These pressure

taps face toward the nozzle and are flush with the flow
side of the paddle. There are also strain gages mounted
on the paddle support posts. These measure the axial
force on the paddles.

The five nozzle geometries tested in this program are
shown in Table 1. The dimensions shown are the nozzle

exit long dimension (L), exit small dimension (_x_, and
the throat dimension (H_. Note there are three main
nozzle types: single-bevelled (3C), straight (4C, 6CD),
and double-bevelled (9C, 9CD). All bevel cuts were
made at thirty (30) degrees from the exit lip. The straight
and the double-bevelled types have both a converging
version which was operated under-expanded and a

converging-diverging version which was run at design
pressure ratio. All of the nozzles were made from fl0 mm
copper pipe. Internal forms were forced into the pipe as
the exterior was hammered until the form proceeded to

the proper axial location. A separate internal form with
a 2.5 degree half angle was used to shape the diverging
portion of the C-D nozzles. Nozzles 4C and 6CD had
final mill cuts applied to the internal surface at the exit to
provide more accurate dimensions. The throat and exit

TABLE 1. NOZZLE

dimensions were accurate and uniform to about 0.1 ram.

It should be noticed from the above description of the

nozzles that these are not precision polished specimens.
It was felt that this level of sophistication was sufficient
for the first cut screening reported here and that any
phenomenon requiting extreme accuracy and polished
surfaces could not be maintained in practice in an actual

engine.

Acoustic Instrumentation and Procedure

During acoustic data acquisition the nozzle was
mounted as shown in Fig. 2 in the vertical position (along

with the paddles if they were used). The microphone
shown strapped to the nozzle was removed. A 6.4 mm
microphone with windscreen was mounted facing
upstream in a three dimensional traversing mechanism.
The microphone traverse was computer controlled

providing 7.62 cm increments during an axial traverse.
The microphone was manually moved in the transverse
direction to start a new axial traverse. In the vertical

plane (Z-X plane through the large dimension of the
nozzle) axial traverses from X = -22.9 cm to +1.22 m

were performed at Z = 7.62, 10.2, 12.7, 15.2, 22.9,
30.5, 38.1, 45.7, and 53.3 cm. The vertical plane
traverses were conducted above the nozzle away from the
floor. In the horizontal plane (Y-X plane through the
small dimension of the nozzle) axial traverses from X = -
7.62 cm to + 1.22 m were performed at -Y = 7.62, 10.2,
12.7, 15.2, 17.8, 20.3, 25.4, and 30.5 cm. The axial
reference was the nozzle exit. A single microphone was
used thus eliminating the problem of differences in multi-

channel systems. The microphone was calibrated using a
standard piston-phone. The aerodynamic instrumentation
used in these experiments has been thoroughly discussed
in reference 7.

The acoustic signal was analyzed using a digital two
channel instrument. The narrow band spectrum was

CONFIGURATIONS TESTED

NOZZLE CONFIGURATION L, nun I-Iexit, n'lnl

3C Single-Bevel, Converg. 66.0 13.5

4C Straight Exit, Converg. 65.8 13.2

6CD Straight Exit, C-D 68.1 14.1

Htlna,lnnl ASPECT
RATIO

13.5 4.893

13.2 4.969

12.5 4.817

9C Double-Bevel, Converg. 64.8 13.7 13.7 4.728

9CD Double-Bevel, C-D 69.3 13.3 11.7 5.200

3



convened to 1/3 octave data using a computer. All noise
data reported here are thus 1/3 octave data except when
tones may be discussed.

Acoustic Results

The results of the two experiments will now be

presented. The first set of results show the noise of the
bevelled rectangular nozzles compared to the conventional

rectangular nozzles. Each comparison will be made for
the same types of nozzles (either converging or
converging-diverging). The comparisons are made
between nozzles 9CD and 6CD, 9C and 4C, and 3C and
4C (see Table 1). The acoustic data at the extreme limits

of our traversing mechanism might be considered to still
be near-field (25 to 100 times the nozzle small
dimension), but it should be sufficiently close to far-field
to be used at least for comparative purposes.

The second phenomenon of induced screech using the
conventional converging-diverging rectangular nozzle
(6CD) will then be presented. The results will show the
effect on the jet mixing and the jet mixing noise source
location. The acoustic data will be very near-field since
this induced screech mixing method would most likely be
used within the shroud of a mixer-ejector system and only
in such a system would there be an acoustic advantage

using this mixing enhancement method.

Acoustic Benefit of Bevelled Nozzles

The evaluation of the acoustic benefit of bevelled

nozzles is quite a complex process since the benefit is
situation or hardware dependent. For example, it will be
shown below that a bevelled rectangular nozzle with
supersonic flow operated out in the open is noisier than its
baseline counterpart because it produces about an
additional ten decibels of very high frequency broadband
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Figure 3. Noise spectra for nozzle 6CD, Mexp = 1.395, sideline

plane of large nozzle dimension, 45.7 cm from axis

noise near the plane of the nozzle exit. However if this
nozzle is enclosed in a properly designed acoustically
treated shroud as in a mixer ejector, this excess noise
does not present a problem. We will attempt to show
here that the bevelled nozzle provides a noise directivity
and spectrum shift that can be beneficial if the system is
properly designed. The noise directivity shift is precisely

the property mentioned in the Introduction section which
has been sought to render the mixing noise more
amenable to attenuation by acoustic liners. A complete
analysis of the acoustic benefits of the bevelled nozzle is

beyond the scope of this paper, but some of the acoustic
elements which must be considered in such an analysis
will be discussed.

The measured noise spectra for the baseline C-D
nozzle 6CD are shown in Fig. 3. All of the data are for
a constant distance sideline of 45.7 cm from the nozzle

axis in the plane of the large nozzle dimension. Seven
equally spaced axial positions are shown from behind the
nozzle plane (-22.9 era) to quite far downstream from the
nozzle (114.3 era). For later more detailed analysis,
twenty positions spaced at 7.6 cm are available but they
would unnecessarily clutter the graph. As would be
expected, near the nozzle exit plane the noise spectra is
dominated by very high frequency noise. As the
microphone is moved downstream, the mixing noise
centered at 2.5 kHz becomes dominant and is seen to

peak somewhere between 68 and 94 cm (actually 84 cm)
at a level of 121.1 dB.

The noise spectra for the double bevelled C-D nozzle
9CD measured at the same sideline positions are shown in
Fig. 4. The very noticeable difference in these spectra
from those of Fig. 3 is the nearly ten decibel increase in
the very high frequency noise mainly near the plane of the
nozzle. It is tempting to attribute this high frequency
noise increase to shock associated broadband noise as

presented by Tam and Tanna 9 and Tam 1°et al. since the

: 120 Y =0. Z-45.7 cm, Z/Ho_ar_4.3 n..r:l.
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Nozzle 6CD, Idexp=1.395

frequency relationship to mixing noise is about correct.

However, this jet is properly expanded and does not have

sufficiently strong shocks to sustain a significant screech
tone even near the nozzle lip (about 138 dB). It is

possible that the oblique bevel of this nozzle exit has

promoted the dominance of oblique instability modes
which was the reasoning behind trying such a nozzle.

The source of this high frequency noise is unknown at

present. As mentioned earlier, this high level noise

dominates the spectrum only near the plane of the nozzle

where it would experience nearly normal incidence onto

an acoustic liner in a properly designed shrouded mixer-

ejector. It is thus of no consequence for the purposes of

this study but could pose a problem for other

configurations.
Other characteristics of the nozzle 9CD noise spectra

can be seen in Fig. 4. The mixing noise peak has shifted

to a higher frequency of 4 kHz. The peak occurs at X =
68.6 cm at a level of 116.9 dB. The reduction in the

peak mixing noise level from 121.1 to 116.9 dB

represents an obvious advantage for the bevelled nozzle.
However, the shift in the location of this peak from 84 cm
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to 69 cm represents another advantage for the bevelled

nozzle which is not quite so obvious. The upstream

location of the peak means that the noise must propagate

a longer distance to reach the end of a given mixer-ejector

system and in addition could be propagating at a larger

angle to the jet axis. If used in conjunction with a

properly designed and located acoustic liner in a shrouded

configuration, the more normal angle of incidence of the
noise on an acoustic liner will provide improved acoustic

suppression for a given liner length.

Cross plots of the data in Figs. 3 and 4 are shown in

Figs. 5 and 6. The latter plots show the direetivity

information more clearly and are simplified by using only

representative frequencies. The peak frequencies of the

mixing noise, 2500 Hz and 4000 Hz, for the two nozzles
are retained. The one-third octave band at 12,500 Hz is

used as representative of the high frequencies without
contamination from screech tones or harmonics where

they occur. The 1600 Hz band represents broadband

noise below the mixing noise peaks for any of the nozzles
studied here. The bands at 5,000 Hz and 10,000 Hz were
avoided to eliminate the screech tone and harmonic when

they occurred (underexpanded converging nozzles).

Bevelling the nozzles when screech occurs produces very

large screech level reductions but this was not the

emphasis of this study.
The same noise characteristics discussed relative to

Figs. 3 and 4 can be seen more clearly in Figs. 5 and 6.
In addition the difference between the noise level curves

in Figs. 5 and 6 are plotted in Fig. 7 which provides a

good condensation of the acoustic differences between
nozzles 9CD and 6CD. The large increase in high

frequency noise is evident near the plane of the nozzle

and the jet mixing noise reduction is evident in the down
stream direction. This sound pressure level difference

format will be used to present the results for the

remainder of the nozzle configurations. The frequencies
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at the peaks of the mixing noise remained at 2500 Hz and
4000 Hz for the straight and bevelled nozzles for all of

the configurations.
The acoustic influence of using a double bevelled exit

with a converging rectangular nozzle operating

underexpanded is summarized in Figure 8. The large
increase in the sound pressure level ,SPL, at high

frequencies near and ahead of the plane of the nozzle exit
is again evident. The very large reduction, nearly 12 dB,
in mixing noise at 2500 Hz in the far downstream
direction is evident. However, now a 5 dB increase in

mixing noise at 4000 Hz is seen. This is mainly due to
a large upstream directivity shift and high frequency shift
of the mixing noise for the double bevelled nozzle. An
acoustic liner would have to absorb this 5 dB hump to

make this geometry effective. This may be quite possible
due to the upstream directivity shift of the noise.

The final bevelled nozzle geometry is the single

bevelled converging nozzle, 3C. The acoustic data for
this nozzle are compared to the standard straight exit
converging nozzle, 4C, in Fig. 9. The data were taken
on the bevelled side (higher SPL side) of this
unsymmetrical nozzle. Again the high frequency SPL
increase is evident near the plane of the nozzle and

substantial mixing noise reductions are evident in the
downstream direction.

It is evident from the acoustic data presented above

that all jets from the bevelled rectangular nozzles have
some common properties. All had large increases in high
frequency noise near the plane of the nozzle. This should
not be a big problem when an acoustically lined duct can
be used around the jets because of the upstream position
and normal to the wall directivity of the source. All

geometries had reductions in the level of the mixing noise
at far downstream positions and a shift to higher

frequency at the peak. A more detailed study must be
made to determine how to best take advantage of these

10 - F, HZ

:ii. 1 --e-- 16oo
m ,-.El-.- 2500

"l- I _ --/_-- 4000

i 5 ", ,z.:_..T_, --=-- 12500

o - _=-'_-.!._ JL_ _ _
Z _ -- U _J_IP"_ "_ I-U-I

=: ,E)...Ey"ET -

#- DOUB.E _ CONV_eNG _'__Z.
m -1 0 Y-0, Z-4S.70g ,E]...E)..E],.i3

, i , f i I , i , _ , i , i , i ' 710 " i , i ,-20 -10 0 10 20 30 40 50 60 80 90

AXIAL DISTANCE FROM NOZZLE EXIT, X/H_

Figure 8. Sound pressure level difference, sideline Z=45.7 cm

SPLNOZ.gC- SPI.Noz.4c, design pressures

properties when a bevelled nozzle might be used with
acoustic treatment on the walls of a mixer-ejector system.

Aerodynamic Properties of Bevelled Nozzles

The supersonic jet flow field from bevelled rectangular
nozzles was the subject of the study reported in reference
8. All of this information is not repeated here, but some
flow properties can be summarized which are useful in the
current discussion. Jets from bevelled converging
rectangular nozzles are deflected from the axial direction
due to the transverse pressure gradient present at the
bevelled exit. This property was also evident in the round
jets reported by Wlezien and Kibens6. The single
bevelled nozzle flow diverts unsymmetrically from the
axis. The double bevelled nozzle flow spreads

symmetrically about the jet axis and was observed to
produce increased mixing over the other geometries as
measured by mass entrainment. This nozzle might be an
excellent choice for some applications which are
consistent with these flow properties. The double
bevelled converging-diverging rectangular nozzle produces

a-jet with very little divergence over that of the straight
exit CD nozzle. This is probably due to the inability of
the transverse pressure gradient to exert an influence
across the supersonic flow in the diverging nozzle exit.

Acoustic Propagation Angle

The upstream shift in the axial position of the peak in
the mixing noise of the jets from the bevelled nozzles is
beneficial if acoustic linings are to be used in the duct of
a mixer-ejector system. It is of interest to determine if
the upstream shift was caused by an upstream shift in the
source location or by an increase in the radiation angle
toward the sideline. To study this effect in an
approximate manner the acoustic data was analyzed in the

10[i F. I-[Z"I'I'I _ 1600

m 5 --_-- 4000
-- --I-- 12500
O
I,LI

-=
#- s_.E BEVEL CONVERCa_G _-
¢0

_'"E}..G 1_,_-10 y-o, Z-45.7 CId

-2o'-;oo;o 3'o40so;o ;o io,o
AXIAL DISTANCE FROM NOZZLE EXIT, X/Hex=t

Figure 9. Sound pressure level difference, sideline Z=45.7 cm

SPI.Noz.ac - SPLNoz.4c, l_xp=1.40



=2
N

X

N
N
O
Z

it

t5
iii
O
Z

I-

3O

2O

10

40 CONV_GING-IZVERGING NOZZLES ."_11
DESIGN PRESSURE .." ,,--/

LINES ARE REGRESSION UNES ..r'l, ,_//.J

NOZ
."" --0"- 0C0 2500

-..o.. god 4000n" o'7-

If:;:"" .-.e-.- 6130 2500---IB-- 6C0 4000

°o ;o '2'0 3'0','o' s'o'io '7'0
DISTANCE FROM NOZZLE EXIT, X/Hex_
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following way. In the plane of the large nozzle
coordinate, at each constant sideline distance (Z) the axial

location (X) of the maximum sound pressure level was

located for each frequency. These coordinates are related

to but not equal to the peak contours in the acoustic

radiation pattern. Since the radiation of interest here,

mixing noise, propagates at an angle to the downstream
axis, the maximum coordinates derived above would be

slightly upstream and outboard from the actual peak.
However, the maximum radiation coordinates are

sufficient for comparative purposes and are plotted in Fig.
I0 for the two converging-diverging nozzles 6CD

(straight) and 9CD (double-bevelled). The loci for two

frequencies, 2500 and 4000 Hz, are shown which are the

peaks in the mixing noise spectra at the Z=45.7 cm
sideline for the two nozzles. The lines through the data

are the linear regression curve-fits. Note that the

regression lines for a given frequency are parallel to each
other for both frequency cases. The curves for nozzle

9CD are just shifted upstream from those of nozzle 6CD
which indicates a source position shift with no radiation

angle shift. The lines for 4000 Hz are at a greater angle
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Figure 11. Loci of maximum radiation, nozzles 9C and 4C, Mexp=1.40

to the axis than the 2500 Hz lines which would be

expected for the slightly higher frequency.
The maximum radiation data for the converging

nozzles 4C (straight) and 9C (double-bevelled) are shown

in Fig. 11. This case, converging nozzles, is substantially
different from that of the previous converging-diverging
nozzles. The double-bevelled nozzle, 9C, is seen to cause

a sl_ft in the source position upstream and also to increase

the noise propagation angle toward the upstream direction.
This is a double benefit when using acoustic liners, but

this advantage may be somewhat diminished since the

mixing noise peak also increased in magnitude (see Fig.

8). A complete analysis of the mixer-liner system must
be made to determine the overall advantage.

The increase in radiation angle for nozzle 9C may be

due to the transverse spreading of the jet responding to

the transverse pressure gradient generated at the bevelled
exit. As discussed in reference 8 and summarized in the

previous section, the converging-diverging double
bevelled nozzle (9CD) does not experience this spreading

and does not have a radiation angle shift.

Acoustic Benefit of a C-D Nozzle

The acoustic advantage of using a straight converging-

diverging nozzle over a straight converging nozzle, both

rectangular, is seen in Fig. 12. The sideline noise
difference at Z=45.7 cm is plotted for several

representative frequencies. The open symbols, 1600 to

4000 Hz, represents the jet mixing noise with the peak at
2500 Hz. The screech tone for the converging nozzle

(4C) is in the 5000 Hz band with harmonics in the higher

frequency bands all shown as filled symbols. Both

nozzlesare operatedatthe fullyexpanded Mach number,

M=_p = 1.4. Nozzle 6CD isatdesignpressureand nozzle

4C operatesundcrexpanded. The peak mixing noiseis

seen tobe reducedby about 3.5 dB. The screechtoneis
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Figure 13. Near-field noise measurements, nozzle 6CD, no paddles

seen to be reduced by nearly 13 dB near the nozzle plane

and the higher frequency harmonics likewise experience

significant reductions.

Induced Screech and Near-Field Jet Noise

In thissectionthe effecton jet mixing noise from

high levelsof induced screechexcitationwillbe shown.

The paddies as shown in Fig. 2 are inserted into the shear

layers on the long sides of the nozzle. The paddies take

the place of shocks in the feedback loop and it is because

of thisanalogythatthe "inducedscreech"terminologyis

used here. The induced screechlevelat the nozzlelip

increasesfrom 142 to 157.8dB usingthelongestpaddies

for the insertion used in this experiment. The jet

experiences a violent flapping mode when excited by the
induced screech. This is clear from the Schlieren

photographs reported in reference 7. Large nonlinear (not

sinusoidal) wave amplitudes were seen to be excited

which caused the jet to alternately impinge upon the

paddies producing large oscillating pressures on the

paddles. The paddies appeared to be acting as a simple
source as suggested by Powell" for higher speed flows.

The forces on the two paddies were out of phase which

5 S
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Figure 14. Nelu'-f'mld noise measurements, nozzle 6CD, long paddles

was required to sustain the flapping instability of the jet.

As the oscillating flow passed the paddies large oscillating
vorticity was imparted on the flow which sustained the

increased mixing downstream from the paddles. A

complete discussion of the mixing enhancement of the jet
can be found in reference 7.

The 1/3 octave noise near-field produced by the

conventional convergent-divergent rectangular nozzle

(6CD) operated at design pressure without paddies is

shown in Fig. 13. The nozzle profile is shown to scale at

the lower left side of the figure. Some interesting

features of the noise field should be pointed out. Very

near to the jet flow, where the constant noise contours are

almost parallel to the jet, the oscillating pressure is caused

by the potential field of the passing large coherent

structures. In Fig. 13, the coherent structures passing at

2500 Hz are seen to peak at an axial location of about

twenty times the nozzle small dimension (X/I-I_ t = 20).

This peak location is an average value since the unsteady

pressure is averaged over one hundred samples by the

digital spectral analyzer. Further from the nozzle axis the

coherent structure potential field falls off rapidly, as seen

by the tight contour spacing near the jet, and the radiated

acoustic field becomes more dominant. For a fairly

highly directional noise source, a lobed pattern of the

contours becomes apparent. This lobed pattern will

become more obvious in the next figure as the radiation

lobe is brought into the field of view.

In Fig. 14 the noise near-field is shown for nozzle

6CD when the full length paddies (76.2 ram) are installed

to induce screech and increase jet mixing. Again the

nozzle and paddies are shown to scale at the lower left of

the figure. The coherent structures are seen to peak out

at X(I-l_at = 12 to 13, a significant reduction from the

value of 20 for the unexcited jet. The lobed pattern of the
noise radiation is now seen at the lower right of the

figure. The paddles have thus moved the jet mixing and

the jet noise radiation source nearer to the nozzle exit.

The mixing enhancement has been inferred here from the

noise near-field but this really just agrees with the

aerodynamic data for this configuration documented in
reference 7.

The noise difference for nozzle 6CD with and without

the paddles is shown in Fig. 15 for the Z=45.7 cm

sideline in the plane of the large nozzle dimension. The

open symbols represent the jet mixing noise and the filled

symbols the induced screech and harmonics. For this

analysis the screech is included since it is produced by the

paddles and must be weighed in any noise comparison.

For this data, at least approximating the far-field, the

noise increase due to the paddies does not look promising.

The jet mixing noise has increased by about 3 dB and the

8
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induced screech and its harmonic has about a 10 dB

increase even at the downstream locations. The contour

plots of Figs. 13 and 14 showed the mixing enhancement
benefit using the paddies, but this benefit is lost in the far-

field. Recall that the stated application of interest here is

an acoustically lined mixer-ejector system and the very

near-field behavior is most important. The noise

difference in the very near field due to using paddies and
induced screech with nozzle 6CD is shown in Fig. 16.

Notice that the large increases in sound pressure level

occur ahead of the paddies which are located at

X/H_it=7.2. At the higher axial distances all of the SPL

levels are falling off. This very near field has a very

complex structure with any measurement being a mixture

of propagating sound and coherent structure potential field

moving at convective velocity. The SPL levels at least
ahead of the nozzle exit are probably dominated by

acoustic propagation while the downstream values may be
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potential field dominated. From Figs. 13, 14, and 16 it

appears that the enhanced mixing due to the induced
screech of the paddles has moved the action upstream and

it just might be possible to exploit this situation using

properly designed acoustic treatment.

Concluding Remarks

Two very different jet noise reduction concepts have

been presented in this paper. The first concept uses a
bevelled exit for a rectangular nozzle producing a

supersonic jet. Converging-diverging and diverging
nozzles were tested. Both single (unsymmetrical) and

double bevelled (symmetrical) cases were used. The

double bevelled CD nozzle showed clear advantages over

that of a straight exit CD nozzle. A 4.2 dB reduction in

jet mixing noise level was observed. All of the bevelled
nozzles tested showed a jet mixing noise spectral shift to

higher frequency and an upstream location shift. The
location shift could be due to upstream source noise

location and/or radiation angle increase both being

advantageous when wall acoustic treatment is used. All

bevelled geometries produced a large increase in high

frequency noise but it was mainly near the plane of the
nozzle and could thus be easily absorbed by wall

treatment.

The second concept, the use of screech inducing paddies

with the supersonic rectangular jet of a converging-

diverging nozzle operated at design pressure may be
useful for internal use in an acoustically treated mixer-

ejector nozzle system. The jet mixing was shown to
increase dramatically moving the jet noise source location

back toward the mixer nozzle lip. This provides a longer

acoustic path length for the internal mixing noise as it

passes through the acoustically treated duct section. Far-
field noise analysis showed a substantial increase in jet

mixing noise and of course in induced screech level.

Very near-field analysis showed that the noise source
increases were confined near the nozzle exit and the

screech inducing paddle location. It is possible that

properly designed acoustic treatment might take advantage

of this upstream source shift.

Additional study should be conducted on both of these

concepts. Only a single bevel angle, 30 degrees, has been

tried. The study has been limited to a fully expanded
Math number of 1.4. For the screech inducing paddies,

drag losses must be minimized while retaining mixing

enhancement and a more upstream directed screech noise
field would be beneficial. For all of the above, the

influence of confining walls and acoustic treatment must
be studied.
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